Direct Uncertainty Estimation in Reinforcement Learning
نویسندگان
چکیده
Optimal probabilistic approach in reinforcement learning is computationally infeasible. Its simplification consisting in neglecting difference between true environment and its model estimated using limited number of observations causes exploration vs exploitation problem. Uncertainty can be expressed in terms of a probability distribution over the space of environment models, and this uncertainty can be propagated to the action-value function via Bellman iterations, which are computationally insufficiently efficient though. We consider possibility of directly measuring uncertainty of the action-value function, and analyze sufficiency of this facilitated approach.
منابع مشابه
Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings
Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free) reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the Bayesian perceives irreducible uncertainty o...
متن کاملLearning Reactive Admittance
In this paper, a peg-in-hole insertion task is used as an example to illustrate the utility of direct as-sociative reinforcement learning methods for learning control under real-world conditions of uncertainty and noise. An associative reinforcement learning system has to learn appropriate actions in various situations through search guided by evaluative performance feedback. We used such a lea...
متن کاملLearning Control Under Extreme Uncertainty
A peg-in-hole insertion task is used as an example to illustrate the utility of direct associative reinforcement learning methods for learning control under real-world conditions of uncertainty and noise. Task complexity due to the use of an unchamfered hole and a clearance of less than 0.2mm is compounded by the presence of positional uncertainty of magnitude exceeding 10 to 50 times the clear...
متن کاملModel-Based Value Expansion for Efficient Model-Free Reinforcement Learning
Recent model-free reinforcement learning algorithms have proposed incorporating learned dynamics models as a source of additional data with the intention of reducing sample complexity. Such methods hold the promise of incorporating imagined data coupled with a notion of model uncertainty to accelerate the learning of continuous control tasks. Unfortunately, they rely on heuristics that limit us...
متن کاملIn Advances in Neural Information Processing Systems
A peg-in-hole insertion task is used as an example to illustrate the utility of direct associative reinforcement learning methods for learning control under real-world conditions of uncertainty and noise. Task complexity due to the use of an unchamfered hole and a clearance of less than 0:2mm is compounded by the presence of positional uncertainty of magnitude exceeding 10 to 50 times the clear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1306.1553 شماره
صفحات -
تاریخ انتشار 2013